
On Accurate Computation of Trajectory Similarity
via Single Image Super-Resolution

Hanlin Cao1, Haina Tang1*, Yulei Wu2, Fei Wang,3 Yongjun Xu3
1Department of Artificial Intelligence, University of Chinese Academy of Science, Beijing, China

2Department of Computer Science, University of Exeter, Exeter, United Kingdom
3Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

caohanlin18@mails.ucas.ac.cn, hntang@ucas.ac.cn, Y.L.Wu@exeter.ac.uk, {wangfei,xyj}@ict.ac.cn

Abstract—Measuring the similarity between trajectories is
fundamental to many location-aware applications. However, the
trajectory data collected in the real world suffer from the low-
quality problem caused by non-uniform sampling rates and
noises, which significantly affects the accuracy of similarity
measurement. Traditional pairwise point-matching methods are
susceptible to non-uniform sampling rates inherently, since they
assume the consistent sampling rate. Although the recurrent neu-
ral network (RNN) based methods have addressed this problem
by complementing trajectory data, they have the drawback of
predicting positions conditioned on the historical data generated
by the model itself, which could lead to accumulated bias during
the inference stage. In this paper, we propose a novel generative
model to address the important issue of low-quality trajectory
data based on single image super-resolution. The trajectory
similarity is thus computed using trajectory images instead of the
trajectory sequential data. By utilizing the images to represent
trajectories, we effectively overcome the issues encountered by
existing methods. Extensive experimental results using real-world
datasets demonstrate that our method outperforms existing
methods in terms of accuracy.

I. INTRODUCTION

Trajectory similarity computation has always been recog-
nized as a fundamental task. An accurate similarity mea-
surement is of significant importance to a wide range of
trajectory based applications, such as moving together discovery
[1], trajectory-user linking [2], trajectory clustering [3] and
trajectory anomaly detection [4]. Unfortunately, due to the
longstanding issue of the low-quality trajectory data, inaccurate
computation of trajectory similarities hinders the performance
and effectiveness of trajectory based applications. The problem
of low-quality trajectory data mainly manifests in two aspects:
1. Non-uniform sampling rates. The sampling rates often

vary across different trajectories due to the different device
settings and communication conditions. Even for the same
trajectory, the sampling rates may vary in different segments.
This could bring about the mixed dense and sparse segments
in trajectory data. Besides, the trajectories collected from
the social networks like geo-tagged tweets and geo-tagged
photo albums are inherently non-uniform [5].

2. Noise. The raw trajectory data always come with noises in
reality, which indicates that the collected data have a certain
degree of deviation from the real trajectory. Such noises

* Corresponding author.

could result from signal blockage, atmospheric conditions,
and receiver design features/quality [6].
Existing trajectory similarity measurements can be cate-

gorized into pairwise point-matching based and RNN based
methods. Pairwise point-matching based methods, including
Dynamic Time Warping (DTW) [7], Longest Common Subse-
quences (LCSS) [8] and Edit Distance on Real sequence (EDR)
[9], mainly use some kind of aggregation of the distances
between trajectory sampling points to measure the similarity.
Such kind of methods may encounter performance degradation
when using low-quality trajectory data. Let us take EDR as an
example to illustrate the problem of non-uniform sampling rates.
EDR assigns a distance of 0 to points pair within the distance
threshold ε, otherwise it assigns an edit distance of 1. Given
ε = 1, in Fig. 1a, EDR only yields a distance of 1 to (a4, b4)
and the remaining points pairs are matched with the distance of
0. However, Ta and Tb are unlike in most parts. Therefore, the
distance of 1 does not reflect the actual dissimilarity between
the two trajectories. Similarly, as illustrated in Fig. 1b, only
(a0, b0) and (a7, b1) can be matched, while the remaining
unmatched points yield a distance of 6 by EDR. Although
such two trajectories are similar, they are assumed dissimilar
using EDR due to the different sampling rates.

Recently, RNN based methods were proposed to cope
with the above problems by managing to predict the missing
positions through maximizing the likelihood of each target
position. However, despite their opportunity, RNN based
methods still suffer from the so-called exposure bias in the
inference stage [10]: the model predicts the next trajectory
point conditioned on the previously predicted ones that may
be never seen in the training data. As a result, the prediction
error would be accumulated along with the generated trajectory
sequence. Besides, the data point in a trajectory depends not
only on the preceding (historical) points but also the succeeding
(future) points within a segment of the trajectory, while RNN
based methods only give inferences based on historical points.
Fig. 1c illustrates an example, where RNN predicts y3 based
on the information contained in y2 and h2, while it cannot
make use of the information from the near future, like l1.

Moreover, both pairwise point-matching based and RNN
based methods can only treat trajectory as sequential data,
thus they heavily rely on the sequential order to measure the
similarity. Specifically, only trajectories with similar sequential

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

20
21

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-6
65

4-
39

00
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IJC
N

N
52

38
7.

20
21

.9
53

38
02

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on August 10,2022 at 08:44:04 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 1: Illustration of the challenges in computing trajectory similarity. (a) Originally dissimilar trajectories are assumed similar
by EDR; (b) Originally similar trajectories are assumed dissimilar by EDR; (c) The prediction process of RNN cannot take
advantage of the information from the near future.

orders can be assumed similar. However, in many scenarios,
the similarity primarily refers to the closeness of the physical
positions between trajectories, while the sequential or the time
information is not as important. For example, in trajectory-user
linking, we need to link trajectories to users who generate
them. In this case, a person’s daily commuting trajectories,
including going to work from home and going back home
after work, should be regarded similar because they have the
similar spatial shape. Existing methods fall short in directly
distinguishing such similar trajectories with inverse orders.

In this paper, we propose a novel generative method for
the trajectory similarity computation called TrjSR (Trajectory
via single image Super Resolution), to tackle the important
issue of low-quality trajectory data caused by non-uniform
sampling rates and noises. The single image super-resolution
(SISR) refers to the task of estimating a high-resolution (HR)
image from a single low-resolution (LR) counterpart. By super-
resolving, the image details can be reconstructed and thus
the quality of the image is enhanced. In practice, the LR
images are usually downsampled from the HR images with
some blurring due to added noises, which is similar to the
situation that the low-quality trajectories resulting from the non-
uniform sampling rates (downsample) and noises (blurring).
This observation enlightens us to introduce SISR to improve
the quality of trajectory data. Specifically, we develop an SISR
model to efficiently generate high-quality trajectory images
from their low-quality counterparts, and a similarity-aware
perceptual loss function is designed to improve the accuracy
of similarity computation.

The main contributions of this paper are three-fold:
• We propose a generative method based on SISR to

accurately compute trajectory similarity. To the best of
our knowledge, this is the first work of introducing SISR
techniques in trajectory similarity computation, making it
more accurate than existing methods.

• We design a similarity-aware perceptual loss function
to better assess the requirement for trajectory similarity
computation. By doing so, not only the perceptually better
super-resolution (SR) results can be obtained, but also
the deep representation of trajectories can be used for

measuring similarity.
• With extensive experimental results on two real-world

datasets, we demonstrate that TrjSR achieves more ac-
curate results against the non-uniform sampling rates
and noises than the state-of-the-art trajectory similarity
measurements.

II. RELATED WORK

In this section, we briefly review the works related to
trajectory similarity computation and SISR.

A. Trajectory similarity computation

Traditional similarity metrics are mainly based on pairwise
point-matching. Dynamic Time Warping (DTW) [7] was
proposed to measure trajectories with different lengths by
recursively searching all possible points combination among
trajectories with the minimal distance. Edit distance with Real
Penalty (ERP) [11] is a trajectory similarity computation
method based on edit distance, which utilized L1-norm as
the distance measure to seek the minimum number of edit
operations required to change one trajectory to another. Longest
common subsequence (LCSS) [8] matches two sequences by
allowing them to stretch, without rearranging the sequence of
the elements but allowing some elements to be unmatched.
Edit Distance on Real sequence (EDR) [9] further against
trajectory noises by assigning penalties to the gaps between the
two matched sub-trajectories. Edit Distance with Projections
(EDwP) [12] was proposed to mainly cope with the challenge
of non-uniform sampling rates. Besides, researchers also adopt
the metrics in mathematics to measure trajectory similarity,
like Fréchet distance [13] and Hausdorff distance [14].

Deep learning models have recently drawn significant
attention, and the ability to learn over large data endows them
with more potential and vitality. [5], [15], [16] all used an RNN
based encoder-decoder model to learn a vector representation
of trajectory and compute trajectory similarity between the
representation vectors. Besides, there was a branch of works
focusing on accelerating trajectory similarity computation for
different measures. For example, [17], [18] designed intricate
models to reduce the time complexity. However, those methods

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on August 10,2022 at 08:44:04 UTC from IEEE Xplore. Restrictions apply.

are all approximate algorithms and they exchange accuracy
for efficiency. Our work differs from the above RNN based
methods in that we utilize convolutional neural network (CNN)
to compute trajectory similarity and we especially focus on
improving the accuracy against low-quality trajectory data.

B. Single image super-resolution

There are mainly three types of SISR methods: interpolation
based, reconstruction based, and learning based methods.
Interpolation based methods, such as bilinear interpolation
[19], bicubic interpolation [20] and Lanczos resampling [21],
are extremely straightforward by estimating the HR pixels using
their neighborhoods. However, such methods tend to generate
overly smooth images. Reconstruction based SR methods [22]
establish an observation model for the image generation process,
and the restored HR image should reproduce the observed LR
images after applying the inverse problem of the observation
model. Nevertheless, the results may lack important high-
frequency details when the desired magnification factor is large
or the number of available input images is small [23]. Learning
based methods aim to establish a mapping relationship between
HR examples and their LR counterparts through training. Most
of the recent learning based methods fall into the example
based methods [24], where the prior knowledge is learned
from LR and HR training pairs.

Recently, deep learning based SISR approaches are brought
to the attention due to their dramatic superiority to reconstruc-
tion based and other shallow learning based methods. Dong
et al. [25] first applied CNN to the SR problem and proposed
SRCNN, which is the first deep learning based SR method.
Since then, various CNN architectures [26]–[29] have been
studied. Among which, both SRResNet [30] and EDSR [31]
employed a deep residual network with skip-connection and
achieved relatively better results. However, recent deep learning
models often have massive parameters, which can cause time
and memory issues during the training and inference stages.
In our work, we focus on trajectory images instead of photo-
realistic RGB images. Since trajectory images have much fewer
texture details than the realistic RGB images, we develop a
lighter SISR model to better cope with the time and memory
issues.

III. PROBLEM FORMULATION

A. Definitions

Definition 1: Route is the actual movement of an object in
the spatial domain. It is a continuous function from time to
space.

Yet, the route cannot be recorded continuously due to the
sampling nature of location acquisition techniques.

Definition 2: Trajectory is a sequence of spatial-temporal
positions sampled from the route and it can be formulated
as T = {(x0, y0, t0), . . . (xk, yk, tk)}, where (xi, yi) is the
geometric coordinates and ti denotes the timestamp at which
the moving object passes the location.

B. Problem description

Given a set of raw trajectories collected from a specific
region, we aim to find trajectories sharing similar routes.
In other words, we concern more about finding trajectories
with shared spatial proximity. Thus we only consider two-
dimensional coordinates as the trajectory data since they contain
sufficient spatial patterns to compute similarity. However, raw
trajectory data may meet low-quality problems caused by non-
uniform sampling rates and noises, and therefore, it can affect
the accuracy of the similarity computation. Our method is
expected to be capable of alleviating such problems and achieve
better results in accuracy.

IV. THE PROPOSED METHOD

In this section, we first explain our motivations of using
generative model. Then we describe the generation process
of the trajectory image. Next, we introduce how we create
example pairs for SISR. Finally, we present our SISR based
method to compute trajectory similarity.

A. Motivations

The main reason that pairwise point-matching based meth-
ods cannot handle non-uniform sampling rates is that those
methods measure similarity upon trajectories instead of routes.
In principle, the route is the better description of objects’
movement since they characterize the entire spatial information.
However, the route only exists theoretically and not available
in practice. Therefore, an intuitive way to tackle non-uniform
sampling rates is to infer the underlying route from the
raw trajectory data. To this end, we take advantage of the
generative model to generate high-quality trajectory images
from their low-quality counterparts, where the low-quality
images represent the non-uniformly sampled trajectories. Those
sparse or missing trajectory segments will be complemented
through the generation process.

B. Trajectory image generation

Given the region where trajectories are collected, we first se-
lect a square area that contains sufficient amount of trajectories
and then scale this area into a fixed-size image. For example,
we can crop a square area belonging to the main city, where
most trajectories happen. Then for a trajectory collected in this
area, we map its coordinates to the pixels of the image, as
depicted in Fig. 2a. However, only with those discrete pixels
may result in a sparse trajectory image. To alleviate the sparsity,
we partition the image into grids of equal sizes, as depicted
in Fig. 2b, and instead we map trajectory coordinates to the
grids. Then, in Fig. 2c, we assign value to pixels in each
grid according to the number of trajectory points fallen on
the gird: the more points imply the longer duration that the
object stays in this grid (a small area in reality), and the higher
value is assigned to pixels in this grid. Thus, different pixel
values can be used to capture the temporal property of the
trajectory. Finally, we transform the raw trajectory data into a
single-channel grayscale image depicted in Fig. 2d.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on August 10,2022 at 08:44:04 UTC from IEEE Xplore. Restrictions apply.

(a) Map coordinates onto re-
gion images.

(b) Partition the images into
grids.

(c) Assign value to pixels in
grid.

(d) The grayscale trajectory
images.

Fig. 2: The process of generating trajectory image.

The motivation of utilizing the trajectory images to represent
raw trajectories is based on the following three observations:

1) Trajectory sequence does not explicitly reflect the spatial
pattern. For example, spatially close positions may not be
sequentially adjacent to each other in the trajectory data.

2) Existing methods compute similarity directly on trajectory
sequence, thus they fail to identify trajectories sampled
from similar routes but with different sequential orders.

3) Applying RNN to trajectory sequences suffers from the
problem of exposure bias [10], and the prediction process
cannot take references from the information of the near
future.

Those observations motivate us to use image representation to
tackle these problems. First, the image is naturally spatial-aware,
both spatially close and temporally close positions can be
depicted as neighboring pixels in the image. Second, trajectories
will be represented as similar images if they are sampled
from the similar routes. Thus the impact of sequential order
is excluded from the similarity computation. Third, by using
image representation, we can take advantage of CNN to address
the problems caused by RNN. For each convolution operation,
the convolutional kernel only actually takes effect around those
image patches with non-zero pixels, which avoid predicting
non-zero pixel values that are far from the current position. In
addition, the receptive field covered by convolutional kernels
contains both former and latter parts of the current trajectory
segment, which means the prediction is not only based on
the preceding data but also takes the succeeding data into
consideration.

C. Creating example pairs

Recall that our method attempts to complement the sparse
or missing trajectory segments by generating a high-quality
trajectory image from its low-quality counterpart. To this end,
it is essential to create reliable HR and LR image pairs for
training. In theory, the trajectory image generated from the
underlying route R should be worthy of the HR image since
it illustrates the most detailed movement of the moving object.
Yet, underlying route is not available in practice, therefore we
adopt the relatively high sampling rate trajectory Thigh and the
relatively low sampling rate trajectory Tlow to create HR and

(a) LR trajectory image (b) HR trajectory image

Fig. 3: An example of an LR and HR image pair.

LR image pairs, where HR image represents the high-quality
trajectory and LR image represents the low-quality trajectory

Specifically, given a raw trajectory sequence T kraw, where
k denotes the number of the sampling points this trajectory
includes, we assume T khigh = T kraw as the relatively high
sampling rate trajectory. Then we downsample the T khigh by
randomly dropping trajectory points to obtain the relatively
low sampling rate trajectory T k

′

low, where k′ ≤ k. Both T khigh
and T k

′

low are sampled from the same underlying route R, with
only one difference: T khigh is relatively closer to R since it
contains more sampling points.

Furthermore, to create low-quality trajectory affected by
noises, we further add Gaussian noises to coordinates belonging
to T k

′

low:

x = x+ 100 · dx, dx ∼ N (0, 1)

y = y + 100 · dy, dy ∼ N (0, 1)

Here, we set the radius of 100 (meters) because in trajectory
images, each grid has the size around 100 meters.

We first transform T k
′

low into LR image ILRW ·H , where W
and H are the width and height of the image. To get the
HR image, we take 2× as upscaling factor r to transform
T khigh into IHRrW ·rH . For brevity, we omit the subscript of the
image size in the remaining contents. As Fig. 3 shows, the
LR trajectory image depicts a low-quality trajectory suffering
from non-uniform sampling rates and noises.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on August 10,2022 at 08:44:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: The architecture of TrjSR.

D. The TrjSR Architecture

The architecture is shown in Fig. 4, which can be mainly
divided into three parts: the SISR, the image embedding and
the loss function.

1) SISR: Note that most existing SISR models were designed
to reconstruct photo-realistic RGB images and they are often
with heavy parameters. While trajectory images in this paper
are single-channel grayscale images without much realistic
texture details, it would be computational expensive to apply
these models to our case. To implement SISR, we design a
lighter but efficient model based on SRResNet to better cope
with the time and memory issues. The details of the our SISR
model are depicted in Fig. 4.

Recall that ILR is the low-quality trajectory image, and IHR

is the corresponding high-quality counterpart. By maximizing
the probability P(IHR|ILR), the output of SISR, i.e. ISR, is
expected to be as close to IHR as possible. Thus, we endow the
model with the ability to complement the sparse and inaccurate
segments from the low-quality trajectory data.

2) Image embedding: SISR improves the quality of ILR, and
we can further use ISR to compute similarity. However, ISR,
is not adequate to be directly used for trajectory similarity com-
putation, mainly for two reasons. First, ISR contains thousands
of pixels (in our case, the pixel amount is 256×256), which is
time-consuming to compare images pixel-wise. Second, as Fig.
3 depicts, most pixels of the trajectory images have zero value,
and it is redundant with so many zero-value pixels. Therefore,
to efficiently compute similarity among trajectories, we further
embed the ISR and IHR into low dimensional vector space as
illustrated in Fig. 4. After max pooling and strided convolution
layers are used to reduce the image resolution, we stretch the
final image (32× 32) into a one-dimensional vector. As thus,
not only a concise representation of trajectory can be obtained,
but also the accuracy and efficiency of similarity computation
is much improved, which is demonstrated in Section V-E.

3) Loss function: To train the embed block and the SISR
model jointly, we design two loss functions to separately
evaluate the trajectory similarity and the performance of SISR.

a) Similarity loss: We define the trajectory similarity loss
as the Euclidean distance between the embedding vectors:

lvec =
1

|v|
‖vSR − vHR‖1

where vSR and vHR denote the embedding vectors of the super-
resolved image ISR and the target image IHR respectively,
and |v| denotes the dimension of v.

The reason of using L1 distance instead of L2 distance here
is that we expect the divergence at each dimension to be wide,
while the L2 distance tends to flatten those divergences. For
example, [0.5, 0.5, 0.5, 0.5] and [1, 1, 0, 0] have the same L1
distance value, while the L2 distance gives a smaller loss to
the former one. In fact, we prefer the latter one because the
big disagreements at the first two dimensions of [1, 1, 0, 0]
provide evidence of the greater ability to distinguish vectors.
Our experimental result in Section V-F proves that using L1
distance is indeed better than L2 distance in practice.

Using the similarity loss for training our embed block
encourages similar trajectory images are as close as possible
after being embedded into the vector space.

Algorithm 1 Mini-batch training of TrjSR.

Input: Trajectory image pairs.
Output: The learned SISR model Gθg and embed block Eθe .

1: for number of training iterations do
2: Sample a minibatch of n image pairs: 〈ILR(i) , I

HR
(i) 〉

n

i=1
3: Generate the super-resolved images: ISR(i) = Gθg (I

LR
(i))

4: Embed the images into vectors:

vSR(i) , v
HR
(i) = Eθe(I

SR
(i)), Eθe(I

HR
(i))

5: Update Eθe by descending its stochastic gradient:

∇θe
1

n

n∑
i=1

l(i)vec

6: Update Gθg by descending its stochastic gradient:

∇θg
1

n

n∑
i=1

l
(i)
SR

7: end for

b) Perceptual loss: The pixel-wise MSE loss is the most
widely used optimization target for SISR:

lMSE =
1

r2WH

rW∑
x=1

rH∑
y=1

(
IHRx,y −GθG

(
ILR

)
x,y

)2
In our case, we not only desire ISR is perceptually similar
to IHR, but also expect the ISR can be embedded into a
better vector representation for similarity computation. Thus,
we design our similarity-aware perceptual loss function as
weighted sum of both pixel-wise MSE loss lMSE and similarity
loss lvec:

lSR = λ · lMSE + µ · lvec

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on August 10,2022 at 08:44:04 UTC from IEEE Xplore. Restrictions apply.

(a) Porto (b) Chengdu

Fig. 5: The selected area. (a) Porto with size of 15×15 km2;
(b) Chengdu with size of 10×10 km2

.

where λ and µ denote the weights for the two components.
The optimization procedure is formally presented in Algorithm
1.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We evaluate the performance of TrjSR on two real world taxi
datasets. Three sets of experiments are performed to analyze
the effectiveness of the proposed TrjSR in Section V-B, with
parameter study in Section V-C. Examples of our recovered
trajectory images are shown in Section V-D. Besides, we also
study the impact of the image embedding and the distance
measurement in Section V-E and Section V-F, respectively.
Source code and implementation details are available online1.

A. Experiments Settings

1) Dataset: We conduct our experiments on publicly avail-
able taxi datasets.
• The first dataset was collected by 442 taxis running in

the city of Porto, in Portugal over 1 year. The sampling
rate is around 15 seconds. We select a square area in the
main city as shown in Fig. 5a, where 1.5M trajectories are
collected in this area. The mean length of the trajectories
is 87.

• The second dataset is collected in Chengdu, China and
released by DiDi Company2. We choose its first 5 days’
data and select an area as illustrated in Fig. 5b, which
include nearly 1M trajectories. The sampling rate is
approximately 3 seconds. The mean length of trajectories
is 196.

To avoid those extremely short trajectories, we remove trajec-
tories with length less than 60 location points for both datasets.
We use a subset of 200K trajectories to create our training
dataset, 10% of which are used for validation.

To create training image pairs as described in Section IV-C,
we take [5] for reference. Specifically, for a raw trajectory, two
types of data transformation methods are applied: downsample
and distortion. First, we downsample the trajectory sequence by

1https://github.com/C-Harlin/trjsr
2https://outreach.didichuxing.com/research/opendata/en

Fig. 6: Illustration of alternately sample trajectory.

randomly dropping location points at four different probabilities
[0, 0.2, 0.4, 0.6]. Then, we distort the above downsampled
instances by randomly adding Gaussian noise to coordinates
at four different probabilities [0, 0.2, 0.4, 0.6]. After the above
operations, 4 × 4 = 16 trajectories reflecting varying levels
of low-quality are created, and they are further transformed
into LR images as Section IV-B described. The original raw
trajectory is used to generate the HR image. As such, we obtain
16 example pairs 〈ILR(i) , I

HR〉16
i=0

from one raw trajectory data.
2) Baseline methods: We compare the accuracy of TrjSR

with LCSS [8], EDR [9], Fréchet distance [13], Hausdorff
distance [14], EDwP [12] and t2vec [5]. We do not take
DTW and ERP for comparison since both EDR and EDwP
have shown superiority over them. t2vec is based on RNN
which achieved competitive results in trajectory similarity
computation.

3) Training details and parameter settings: Our implemen-
tation uses Pytorch on Ubuntu 18.04; training takes roughly
20 hours on a single GeForce RTX 2080Ti GPU. We train our
model with Adam optimizer by setting β1 = 0.9, β2 = 0.999,
and ε = 10−8, with the learning rate of 10−4 and the batch
size of 32 for 90,000 iterations, giving approximately 4 epochs
over the training data.

For training the SISR model, we use the single-channel
grayscale image of size 128×128 as input LR image, with
the corresponding HR image of size 256×256 as the target.
The weights for similarity-aware perceptual loss function lSR
are set as λ = 0.1, µ = 1. For training the embed block, the
input SR/HR images are embedded into the vectors of 1024
dimensions. The matching threshold ε for LCSS and EDR is
set following the original papers [8], [9].

B. Performance Evaluation

Recall that we initially attempt to infer the underlying route
R from the raw trajectory T kraw via a generative model, and
those trajectories sharing the similar underlying route are
identified as similar. Since R is not available in practice, we
alternatively take T kraw as the suboptimal choice to represent
R because it is the closest trajectory to R in dataset. Thus,
those low-quality trajectories transformed (i.e. downsample
and distortion) from the same T kraw can be regarded as similar
since they all reflect the same pseudo underlying route T kraw.

With the above idea in mind, we apply the similar procedure
as mentioned in [5] by creating two datasets: DQ and DB . DQ

contains 1000 trajectories used as the query, and trajectories
in DB are served as database. The size of DB is a parameter
to be evaluated. For each trajectory T ∈ DQ, we alternately

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on August 10,2022 at 08:44:04 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Mean rank of 1000 query trajectories versus different
database size.

Porto
database size 20k 40k 60k 80k 100k

LCSS 3.203 5.581 7.882 10.502 13.037
EDR 3.213 5.36 7.65 9.53 11.278

EDwP 1.678 2.275 2.859 3.409 3.965
Fréchet 2.569 4.205 5.692 7.239 8.794

Hausdorff 1.26 1.5 1.675 1.884 2.129
t2vec 1.292 1.415 1.579 1.753 1.972
TrjSR 1.179 1.227 1.305 1.372 1.466

Chengdu
database size 20k 40k 60k 80k 100k

LCSS 11.134 20.842 30.479 40.303 49.887
EDR 1.131 1.254 1.375 1.508 1.637

EDwP 1.334 1.644 1.965 2.289 2.626
Fréchet 10.483 19.869 29.325 38.71 48.053

Hausdorff 1.689 2.36 3.075 3.804 4.523
t2vec 1.308 1.608 1.907 2.213 2.524
TrjSR 1.097 1.195 1.288 1.383 1.478

take trajectory points to obtain two sub-trajectories Ta and T ′a
as shown in Fig. 6. This procedure guarantees that Ta and T ′a
are both similar and distinct as well. Ta and T ′a are further
used to create two datasets Da = {Ta} and D′a = {T ′a}.
For each trajectory Ta ∈ Da, there exists a corresponding
similar trajectory T ′a in D′a. We conduct the same procedure to
trajectories in DB to get Db and D′b. Then, for each trajectory
Ta ∈ Da, we retrieve the top-k most similar trajectories in
D′a∪D′b (or D′a∪Db) and calculate the rank of T ′a. According
to our assumption, T ′a should be ranked at the top place, since
Ta and T ′a are generated from the same trajectory. Besides,
we can also perform data transformation (downsample and
distortion) on Da, D′a and D′b to evaluate the performance
under different types of low-quality.

1) Accuracy on clean data: We first evaluate the perfor-
mance on clean data, in which the methods are expected to
find T ′a ∈ D′a ∪ D′b as the most similar trajectory for each
Ta ∈ Da. We increase the size of D′a ∪D′b by varying the size
of DB . Euclidean distance is adopted to measure the similarity
between trajectories.

Table I shows the results of the mean ranks of 1000 query
trajectories versus the increased size of D′a ∪D′b from 20K to
100K on Porto and Chengdu datasets. We can see that LCSS
performs worst as it ignores the differences of the gap between
trajectories, which leads to inaccuracy. Fréchet distance has
similar results to LCSS. EDR achieves better results than
LCSS because it assigns penalties to the unmatched point
pairs which improves the accuracy, and it performs much
better on Chengdu dataset. EDwP and Hausdorff distance
perform relatively more stable and better than other pairwise
point-matching methods on both datasets. Although t2vec
demonstrates competitive results, our method outperforms all
the other methods, which sheds light on the feasibility of using
CNN to deal with sequential trajectory data.

2) Accuracy against non-uniform sampling rates: Next,
we conduct data transformations on trajectories to evaluate the
ability against non-uniform sampling rates. Specifically, we

TABLE II: Mean rank of 1000 query trajectories versus
different downsampling rates r1.

Porto
r1 0.2 0.3 0.4 0.5 0.6

LCSS 42.278 61.526 116.576 169.02 284.751
EDR 5.921 23.257 47.398 254.862 693.718

EDwP 6.782 8.124 11.872 23.319 44.891
Fréchet 17.937 19.617 52.978 108.015 227.972

Hausdorff 8.786 15.202 36.542 143.171 259.849
t2vec 7.782 28.33 29.029 124.266 184.508
TrjSR 3.156 4.839 10.518 19.828 43.636

Chengdu
r1 0.2 0.3 0.4 0.5 0.6

LCSS 81.223 99.035 124.059 159.544 201.715
EDR 2.916 3.051 9.496 65.51 149.343

EDwP 2.795 3.149 3.606 4.56 12.427
Fréchet 70.94 58.478 51.541 65.321 97.646

Hausdorff 28.97 26.593 8.946 40.089 128.983
t2vec 3.271 3.142 5.051 5.579 13.362
TrjSR 2.258 2.736 3.454 3.627 6.181

randomly downsample trajectory points at the rates varying
between 0.2 and 0.6 to simulate the condition of having non-
uniform sampling rates. The size of D′a ∪D′b is fixed to 100K.

Table II presents the mean ranks of 1000 query trajectories
versus different downsampling rates r1 on both datasets. As the
downsampling rate increases, the performance of all methods
gets worse. Among all the baseline methods, EDwP performs
best owing to the technique of linear interpolation it utilizes.
t2vec performs relatively well when r1 is low, but its mean
ranks degrade quickly as r1 increases, which implies that
t2vec is not competent enough against non-uniform sampling
rates. Note that all the methods get better results on Chengdu
dataset. This is because trajectory data collected in Chengdu
have higher sampling rate of appropriately 3 seconds per point,
which alleviates the problem of sparsity and thus benefits the
similarity computation.

3) Accuracy against noises: Then, we study the effect
of noises on different methods. We randomly distort the
coordinates of trajectory in Da and D′a ∪D′b to simulate the
situation where noises exist. The distorting rate r2 varies from
0.2 to 0.6 and |D′a ∪D′b| = 100, 000.

From Table III, we can observe that the performance of all
methods, except for EDR and LCSS, does not degrade much
as r2 increases, which means they are all robust to noises to
some extent. Similar to the case of downsample, the mean
rank of EDR starts to degrade dramatically when r2 increases.
EDwP and t2vec demonstrate similar results on both datasets.
TrjSR outperforms all the other methods with a large margin on
Porto dataset and has competitive results on Chengdu dataset,
indicating that our method is the most robust against noises
when computing trajectory similarity.

C. Parameter study

The number of convolutional kernel and residual block
determines the quality of the SR image, and further affects the
accuracy of similarity computation. To evaluate their influence,

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on August 10,2022 at 08:44:04 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Mean rank of 1000 query trajectories versus
different distort rates r2.

Porto
r2 0.2 0.3 0.4 0.5 0.6

LCSS 16.978 22.526 26.998 34.639 51.524
EDR 25.516 34.413 49.573 110.356 174.791

EDwP 3.585 3.668 3.612 3.431 3.545
Fréchet 8.855 8.616 8.612 7.939 8.652

Hausdorff 3.068 2.889 3.087 3.032 3.325
t2vec 3.365 3.809 5.074 5.683 10.518
TrjSR 1.602 1.841 1.883 2.18 2.169

Chengdu
r2 0.2 0.3 0.4 0.5 0.6

LCSS 104.834 139.937 184.449 249.332 301.863
EDR 1.667 6.906 34.54 70.086 122.792

EDwP 3.372 3.652 3.492 3.714 3.768
Fréchet 50.259 50.244 43.289 51.634 46.278

Hausdorff 7.576 8.642 8.025 8.6 8.281
t2vec 3.321 3.44 3.745 4.153 5.049
TrjSR 2.415 3.006 3.545 3.627 3.208

TABLE IV: The impact of the number of convolutional kernel
and residual block on the accuracy using Porto dataset.

#convolutional kernel 8 16 32 64
r1 = 0.6 72.814 49.325 230.858 83.523
r2 = 0.6 1.998 1.621 3.773 2.302

#residual block 1 2 3 4 5
r1 = 0.6 153.071 81.958 63.054 82.932 118.029
r2 = 0.6 1.986 2.447 1.544 2.401 1.724

we compare the mean ranks of 1000 queries when r1 = 0.6
and r2 = 0.6 on Porto dataset.

As shown in Table IV, the combination of 3 residual blocks
with 16 kernels in each convolutional layer of SISR model
gives the best results.

D. Result of SISR

Recall that we aim to generate high-quality trajectory images
from low-quality ones through SISR. Here, we present the
qualitative results of our trajectory SISR as shown in Fig. 7.
The proposed model successfully complements the incomplete
segments with generated points and also reconstructs the details
from noises.

E. Effect of image embedding

As we discussed in Section IV-D2, a trajectory image is
not adequate to be directly used for similarity computation.
Therefore, we embed trajectory images into a vector space. In
this section, we evaluate the effectiveness of image embedding
for trajectory similarity computation.

To measure the similarity of trajectory images directly for
comparison, we independently train our SISR model from
scratch on Porto dataset, with the same parameter settings as
we use in the process of training TrjSR. As for the similarity
measurements, we utilize MSE and structural similarity index
measure (SSIM), which are commonly used similarity loss
functions in the field of SISR. Similar to the implementation in
Section V-B1, we retrieve the rank of T ′a ∈ D′a ∪D′b for each

Fig. 7: Qualitative results (PSNR(dB) / SSIM) of trajectory
image ×2 super-resolution.

TABLE V: Mean rank for different similarity measurements
versus different database sizes on Porto dataset.

database size 1k 2k 3k 4k
MSE 1.015 1.032 1.044 1.063
SSIM 1.082 1.187 1.257 1.341

Embedding 1.01 1.017 1.028 1.041

Ta ∈ Da. The size of D′a∪D′b is reduced to the range between
2K and 4K, because the time consumption for calculating SSIM
on large image datasets is unaffordable.

The results in Table V prove that simply minimizing MSE
or SSIM on trajectory images does not bring about the most
accurate results in similarity computation. Instead, with the
trajectory image embedding, we can improve the accuracy of
similarity computation as well as obtain the concise trajectory
representation, which benefit our solution in time consumption
when calculating the similarity.

F. Effect of L1 and L2 distance

To prove that L1 distance is better than L2 distance for
measuring the similarity loss in our case as we analyzed in
Section IV-D3a, we conduct the following experiment on Porto
dataset to compare their effects on the accuracy of trajectory
similarity computation.

We first pre-train our SISR model independently for 3 epochs
to make it generate good-enough super-resolved images. Then,
two embed blocks with the only difference of L1 distance and
L2 distance in similarity loss function lvec are used to jointly
train with the SISR model for another 1 epoch respectively.
Similar procedure for evaluating accuracy is applied as we did
in Section V-B2 and Section V-B3.

As shown in Table VI, under the same training condition, the
accuracy of using L2 distance declines rapidly as downsampling
rate increases. As for distortion, using L1 distance brings about
more robustness against distorting rate. From the above, we

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on August 10,2022 at 08:44:04 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: The impact of different distance measures on Porto
dataset.

Distance
Measure

downsampling rate r1 distorting rate r2
0.2 0.4 0.6 0.2 0.4 0.6

L2 1.892 94.759 142.065 1.246 1.702 12.674
L1 3.137 12.806 85.234 0.739 1.322 1.157

can conclude that L1 distance is more adequate to be used
in similarity computation in our case. Besides, it is more
computational expensive to compute L2 loss compared to L1
loss.

VI. CONCLUSION

In this paper, we proposed a novel generative model, TrjSR,
to deal with the low-quality trajectory data caused by non-
uniform sampling rates and noises in trajectory similarity
computation. The SISR techniques are adopted to generate
high-quality trajectory images, and we developed a similarity-
aware perceptual loss function to encourage our model to
generate high-quality trajectory images in favor of computing
similarity. In this sense, the proposed TrjSR bridged the
gap between the sequential trajectory data and the SISR.
Extensive experimental results showed that the proposed
method outperforms existing methods in terms of accuracy.
Moreover, we conducted comparative study to further validate
the effectiveness of our method. In addition, the embedding
vector of trajectory images can be used not only for similarity
computation but also as the trajectory representation for other
applications, which we leave for our future investigation.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (NSFC) (Grant No. 52071312), and the
Open Program of Zhejiang Lab (Grant No. 2019KE0AB03).

REFERENCES

[1] L.-A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C.-C. Hung, and W.-C.
Peng, “On discovery of traveling companions from streaming trajectories,”
in 2012 IEEE 28th International Conference on Data Engineering. IEEE,
2012, pp. 186–197.

[2] F. Zhou, Q. Gao, G. Trajcevski, K. Zhang, T. Zhong, and F. Zhang,
“Trajectory-user linking via variational autoencoder,” IJCAI International
Joint Conference on Artificial Intelligence, vol. 2018-July, pp. 3212–3218,
2018.

[3] B. Han, L. Liu, and E. Omiecinski, “A systematic approach to clustering
whole trajectories of mobile objects in road networks,” IEEE Transactions
on Knowledge and Data Engineering, vol. 29, no. 5, pp. 936–949, 2017.

[4] Z. Fu, W. Hu, and T. Tan, “Similarity based vehicle trajectory clustering
and anomaly detection,” in IEEE International Conference on Image
Processing 2005, vol. 2. Ieee, 2005, pp. II–602.

[5] X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei, “Deep representation
learning for trajectory similarity computation,” in 2018 IEEE 34th
International Conference on Data Engineering (ICDE), 2018, pp. 617–
628.

[6] National Coordination Office. (2020, April) How accurate is gps? [Online].
Available: https://www.gps.gov/systems/gps/performance/accuracy/#how-
accurate

[7] B. K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar
time sequences under time warping,” in Proceedings - International
Conference on Data Engineering, 1998.

[8] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar
multidimensional trajectories,” Proceedings - International Conference
on Data Engineering, 2002.

[9] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search for
moving object trajectories,” in Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, 2005, pp. 491–502.

[10] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in Advances in
Neural Information Processing Systems, 2015.

[11] L. CHEN and R. NG, “On The Marriage of Lp-norms and Edit Distance,”
in Proceedings 2004 VLDB Conference, 2004.

[12] S. Ranu, P. Deepak, A. D. Telang, P. Deshpande, and S. Raghavan,
“Indexing and matching trajectories under inconsistent sampling rates,”
in Proceedings - International Conference on Data Engineering, 2015.

[13] T. Eiter and H. Mannila, “Computing discrete Fréchet distance,” Notes,
1994.

[14] E. Belogay, C. Cabrelli, U. Molter, and R. Shonkwiler, “Calculating
the Hausdorff distance between curves,” Information Processing Letters,
1997.

[15] Y. Zhang, A. Liu, G. Liu, Z. Li, and Q. Li, “Deep Representation
Learning of Activity Trajectory Similarity Computation,” 2019 IEEE
International Conference on Web Services (ICWS), pp. 312–319, 2019.

[16] T. Y. Fu and W. C. Lee, “TremBR: Exploring road networks for trajectory
representation learning,” ACM Transactions on Intelligent Systems and
Technology, 2020.

[17] D. Yao, G. Cong, C. Zhang, and J. Bi, “Computing trajectory similarity
in linear time: A generic seed-guided neural metric learning approach,”
in Proceedings - International Conference on Data Engineering, 2019.

[18] H. Zhang, X. Zhang, Q. Jiang, B. Zheng, Z. Sun, W. Sun, and
C. Wang, “Trajectory similarity learning with auxiliary supervision and
optimal matching,” in IJCAI International Joint Conference on Artificial
Intelligence, 2020.

[19] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE
Transactions on Image Processing, 2001.

[20] R. G. Keys, “Cubic Convolution Interpolation for Digital Image Process-
ing,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
1981.

[21] C. E. Duchon, “LANCZOS FILTERING IN ONE AND TWO DIMEN-
SIONS.” Journal of applied meteorology, 1979.

[22] M. E. Tipping and C. M. Bishop, “Bayesian image super-resolution,” in
Advances in Neural Information Processing Systems, 2003.

[23] S. Baker and T. Kanade, “Limits on super-resolution and how to break
them,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2002.

[24] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-level
vision,” International Journal of Computer Vision, 2000.

[25] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[26] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in European conference on computer
vision. Springer, 2016, pp. 391–407.

[27] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-Time Single Image and Video Super-
Resolution Using an Efficient Sub-Pixel Convolutional Neural Network,”
in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2016.

[28] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using
very deep convolutional networks,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2016.

[29] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser
prior for image restoration,” in Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, 2017.

[30] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic
single image super-resolution using a generative adversarial network,” in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, 2017.

[31] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced Deep Residual
Networks for Single Image Super-Resolution,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops,
2017.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on August 10,2022 at 08:44:04 UTC from IEEE Xplore. Restrictions apply.

		2021-09-17T14:00:33-0400
	Certified PDF 2 Signature

